ON THE SZEGED INDEX OF NON-COMMUTATIVE GRAPH OF GENERAL LINEAR GROUP

نویسندگان

چکیده مقاله:

Let $G$ be a non-abelian group and let $Z(G)$ be the center of $G$. Associate with $G$ there is agraph $Gamma_G$ as follows: Take $Gsetminus Z(G)$ as vertices of$Gamma_G$ and joint two distinct vertices $x$ and $y$ whenever$yxneq yx$. $Gamma_G$ is called the non-commuting graph of $G$. In recent years many interesting works have been done in non-commutative graph of groups. Computing the clique number, chromatic number, Szeged index and  Wiener index play important role in graph theory. In particular, the clique number of non-commuting graph of some the general linear groups has been determined. nt Recently, Wiener and Szeged indiceshave been computed for $Gamma_{PSL(2,q)}$, where $qequiv 0 (mod~~4)$. In this paper we will compute the Szeged index for$Gamma_{PSL(2,q)}$, where $qnotequiv 0 (mod ~~ 4)$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on the szeged index of non-commutative graph of general linear group

let $g$ be a non-abelian group and let $z(g)$ be the center of $g$. associate with $g$ there is agraph $gamma_g$ as follows: take $gsetminus z(g)$ as vertices of$gamma_g$ and joint two distinct vertices $x$ and $y$ whenever$yxneq yx$. $gamma_g$ is called the non-commuting graph of $g$. in recent years many interesting works have been done in non-commutative graph of groups. computing the clique...

متن کامل

On the Szeged and Eccentric connectivity indices of non-commutative graph of finite groups

Let $G$ be a non-abelian group. The non-commuting graph $Gamma_G$ of $G$ is defined as the graph whose vertex set is the non-central elements of $G$ and two vertices are joined if and only if they do not commute.In this paper we study some properties of $Gamma_G$ and introduce $n$-regular $AC$-groups. Also we then obtain a formula for Szeged index of $Gamma_G$ in terms of $n$, $|Z(G)|$ and $|G|...

متن کامل

on the szeged and eccentric connectivity indices of non-commutative graph of finite groups

let $g$ be a non-abelian group. the non-commuting graph $gamma_g$ of $g$ is defined as the graph whose vertex set is the non-central elements of $g$ and two vertices are joined if and only if they do not commute.in this paper we study some properties of $gamma_g$ and introduce $n$-regular $ac$-groups. also we then obtain a formula for szeged index of $gamma_g$ in terms of $n$, $|z(g)|$ and $|g|...

متن کامل

A N‎ote on Revised Szeged ‎Index of ‎Graph ‎Operations

Let $G$ be a finite and simple graph with edge set $E(G)$‎. ‎The revised Szeged index is defined as‎ ‎$Sz^{*}(G)=sum_{e=uvin E(G)}(n_u(e|G)+frac{n_{G}(e)}{2})(n_v(e|G)+frac{n_{G}(e)}{2}),$‎ ‎where $n_u(e|G)$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$ and‎ ‎$n_{G}(e)$ is the number of‎ ‎equidistant vertices of $e$ in $G$‎. ‎In this paper...

متن کامل

Directed prime graph of non-commutative ring

Prime graph of a ring R is a graph whose vertex set is the whole set R any any two elements $x$ and $y$ of $R$ are adjacent in the graph if and only if $xRy = 0$ or $yRx = 0$.  Prime graph of a ring is denoted by $PG(R)$. Directed prime graphs for non-commutative rings and connectivity in the graph are studied in the present paper. The diameter and girth of this graph are also studied in the pa...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 1  شماره 2

صفحات  105- 115

تاریخ انتشار 2014-11-20

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023